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Abstract 

In this paper, we have investigated anisotropic Bianch type  cosmological 

model with wet dark fluid in the framework of  theory of gravity proposed 

by Harko et al., [1] for an applicable option of the function 

, where  and  where  is 

constant parameter. We presented exact solutions of the fields equations by using a 

special form of the average scale factor derived from the time varying deceleration 

parameter and assuming that the shear scalar  in the model is proportional to 

expansion scalar . We have seen that the model has no initial singularity and 

shows accelerated expansion of the universe for the late times. It is also assumed 

that the model gained here reveals that even in the presence of WDF, the universe 

indicates accelerated expansion of the universe in late times. Few physical and 

geometric features of the model became examined. Thus, it has been seen that 

 gravity explains the present phase of cosmic acceleration of our universe in 

the presence of wet dark fluid. 

 

Key words: Bianchi type-  space time, Wet Dark Fluid, Hubble parameter,  

gravity. 

 

Introduction 

Contemporary astronomical 

investigations exhibit that the recent 

history of the universe is persistent with 

accelerated expansion (Riess et al., [2]; 

Perlmutter et al., [3]; Bennet et al., [4]). 

Researchers think this action is created 

by a type of negative pressure energy 

known as dark energy (DE). Thus dark 

energy plays major role in the universe 

acceleration. In order to observe the DE 

we have a few models. The first action is 

by developing the contented of the 

universe, by recommended a dark 

energy sector such as quintessence, 

phantom, chaplygin gas, g-essence etc. 

The second direction is to modify the 

gravitational sector itself including 

, and theories 

of gravity. 

The general theory of gravity is 

well established and succeeds in all 

localized experimental trials to the scale 
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of the solar system. The modification in 

Einstein–Hilbert action on large 

cosmological scales may be a correct 

explanation of a late time cosmic 

acceleration of the expanding universe. 

Over recent years, developments over 

general relativity are attracting a lot of 

attention to understand the acceleration 

of late time and dark energy. There have 

been several modifications of GR, over 

the past decade to provide natural 

gravity alternative for DE. Among the 

various modifications, due to 

cosmologically important models, 

 gravity theory is treated as best 

suited. 

It was proposed that interstellar 

acceleration could be accomplished by 

replacing the Einstein–Hilbert action of 

general relativity with a general function 

Ricci scalar,  Viable  gravity 

models have been proposed by Nojiri 

and Odintsov [5], Multamaki and Vilja [6, 

7] and Shamir [8] which show the 

unification of early time inflation and 

late time acceleration. Harko et al., [1] 

proposed another extension of standard 

general relativity,  theory of 

gravity where in the gravitational 

Lagrangian is an arbitrary function of 

the Ricci scalar  and of the trace of the 

stress energy tensor . It is observed 

that the dependency from  may be 

caused by curious incomplete quantum 

effects of fluids. They have derived the 

field equations from a Einstein–Hilbert 

type variational principal and also 

obtained the covariant divergence of 

the stress-energy tensor. A particular 

decided filed equations eagerly 

achieved by  and 

source term is acquired as a function of 

the matter . The 

combination of matter and 

configuration and the covariant 

deviation for the stress energy tensor is 

anti-zero in the existing model. 

An attractive debit is the study of 

Bianchi type models in modified gravity 

theories or alternative theories. The 

abnormalities found in the CMB and 

large-scale structure examinations of 

sparked increased interest in the 

universe anisotropic cosmological 

models. Kumar and Singh [9] and Singh 

and Agarwal [10] studied some Bianchi 

type-  and  cosmological models in 

scalar-tensor theory. Paul et al., [11] 

obtained FRW  models in   gravity 

while Sharif and Shamir [12] have 

studied the solutions of Bianchi type-  

and  space-times in the framework of 

 gravity. Raoand Neelima [13,14] 

have obtained perfect fluid Einstein 

Rosen and Bianchi type-  universes in 

 gravity respectively. LRS 

Bianchi type-  and Bianchi type-

 and  cosmological models in 

 theory of gravity obtained by 

Rao et al., [15,16]. Recently, Rao et al., 

[17] have obtained Bianchi type- 

and  bulk viscous string 

cosmological models in  gravity. 

Holman and Naidu [18] introduced 

a new candidate for DE, called the wet 

dark fluid (WDF). Here we confine 

ourselves to Bianchi type-  universe 

wet dark fluid in  gravity. In this 

paper, anisotropic Bianchi type-  

cosmological model with wet dark fluid 

in gravity are investigated. The 

paper is organized as follows: In section 
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2, formalism of wet dark fluid is 

explained. The field equations of 

 gravity introduction in metric 

format is illustrated in section 3. Explicit 

field equations in  gravity are 

derived using the particular form of 

 used by Harko et al., [1] with the 

aid of Bianchi type-  metric in the 

presence of wet dark fluid in section 4. 

In section 5, solutions of the field 

equations are obtained. The physical 

properties of the model were examined 

in section 6. Ultimately, we explain the 

results of our work in section 7. 

 

Wet dark fluid 

Wet dark fluid (WDF) is another 

form of dark energy where a physically 

motivated equation of state is offered 

with the properties relevant for a DE 

problem. Here, we are motivated to use 

the WDF as candidate for dark energy 

model, which seems, from an empirical 

equation of state proposed by Tait [19] 

and Hayward [20], to treat water and 

aqueous solutions. The equation of 

state for the WDF is given by Holman 

and Naidu [18] as 

      (1) 

The parameters  and  are 

taken to be positive.  and  

respectively represent the pressure and 

energy density of WDF. This non-

homogeneous linear equation of state 

(EoS) provides a description of hydro-

dynamically stability. One can notice here 

that the WDF of EoS contains two parts, 

one behaves as the usual barotropic 

cosmic fluid and the other behaves as a 

cosmological constant and unifies the 

dark energy and dark matter 

components. We are motivated to use 

the wet dark fluid (WDF) as a model for 

dark energy which stems from an 

empirical equation of state to treat water 

and aqueous solution. We treat  as a 

phenomenological equation (Chiba et al., 

[21,22]) and for the parameters  and , 

we restrict ourselves to   

Babichev et al., [23] also proposed a 

dark energy model with a linear 

equation of state similar to , which is 

- , where  and  are free 

parameters, to overcome the hydro 

dynamical instability of the dark energy 

with the usually used EoS where 

constant . Motivated by the 

fact that this is a good approximation 

for many fluids, including water, in 

which the internal attraction of the 

molecules make negative pressures 

possible. To obtain the WDF energy 

density, we use the energy conservation 

equation 

      (2) 

where  is the average Hubble 

parameter given by . From 

equation of state  and using 

 in above equation , we 

have  

        (3) 

where is the constant of 

integration and is the volume 

expansion. The WDF naturally includes 

the following components: a piece that 

behaves as a cosmological constant as 

well as a standard fluid with an equation 

of state  . We can show 

that if we take , this fluid will not 

violate the strong energy condition 
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    (4) 

Holman and Naidu [18] observed 

that their model is consistent with the 

most recent type  supernova, the 

wilkinson microwave anisotropy probe 

(WMAP) results as well as the 

constraints coming from measurements 

of the power spectrum. Hence they 

considered both the case where the dark 

fluid is smooth (i.e. only the cold dark 

matter component cluster 

gravitationally) as well as the case 

where the dark fluid also clusters. Singh 

and Chaubey [24] studied the Bianchi 

type-I universe with wet dark fluid. 

Adhav et al., [25] studied the Einstein–

Rosen and Bianchi type-III universe with 

wet dark fluid in general relativity. Jain 

et al., [26] studied the axially symmetric 

cosmological model with wet dark fluid 

in the bimetric theory of gravitation. 

Recently, Samanta [27] discussed the 

Bianchi type-V universe filled wet dark 

fluid in the f (R, T) theory of gravity and 

showed that the universe approaches 

isotropy monotonically in the presence 

of wet dark fluid. 

 

Gravitational field equation of  

gravity 

Modified theory of gravity provides 

a natural unification of early-time 

inflation and late-time acceleration 

(Bennet et al., [4]; Capozziello [28]). 

Among the other modified theories, 

theory of scale-Gauss-Bonnet gravity, so 

called f (G) gravity (Nojiri et al., [29]) 

and a theory of f(T) gravity (Linder 

[30]), where T is the torsion have been 

proposed to explain the accelerated 

expansion of universe. Harko et al., [1] 

proposed a new f(R,T) modified theory 

of gravity, wherein the gravitational 

Lagrangian is given by an arbitrary 

function of the Ricci scalar R and the 

trace of the stress-energy tensor T . In 

this paper we use the natural system 

of units with G = c = 1, so that the 

Einstein gravitational constant is defined 

as κ2 = 8π. The field equations of 

modified theory of f (R, T) gravity are 

derived from the Hilbert–Einstein type 

variation principle. The action for the 

modified theory of f (R, T) gravity is 

 (5) 

where f (R,T) is an arbitrary function of 

Ricci scalar R and T be the trace of 

stress-energy tensor (Tij) of the matter. 

Lm is the matter Lagrangian density. The 

energy momentum tensor (Tij) is defined 

as 

        (6) 

By assuming that Lm of matter depends 

only on the metric tensor components 

gi j, and not on its derivatives, we obtain  

           (7) 

Now by varying the action S of the 

gravitational field with respect to the 

metric tensor components gij, we 

obtain the field equations of f (R, T) 

gravity as  

   (8) 

where  





gg

L
gLgT

ij

m

mijijij



−+−=

2

22 (9) 

Here i  is the covariant derivative, 
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 and Tij is 

the standard matter energy momentum 

tensor derived from the Lagrangian Lm. 

It may be noted that when f (R, T) = f (R), 

equation (8) yield the field equations of 

f (R) gravity.  

 

  (10) 

where . Equation (10) gives a 

relation between Ricci scalar R and the 

trace of energy momentum tensor T. 

Then with the use of (9), we obtain the 

variation of stress-energy. Using matter 

Lagrangian Lm, the tensor of stress 

energy of the matter is given by 

, (11) 

where ui = (1, 0, 0, 0) is the four velocity 

and satisfies the condition , 

where  and  are the energy 

density and pressure of the wet dark 

fluid respectively. Here the matter 

Lagrangian can be taken as 

 since, there is no unique 

definition of the matter Lagrangian. 

Then with the use of (9), we obtain for 

the variation of stress-energy of wet 

dark fluid as 

    (12) 

On the physical nature of the 

matter field, the field equations also 

depend through the tensor Θi j. Hence in 

the case of f (R,T) gravity depending on 

the nature of the  matter source, we 

obtain many theoretical models 

corresponding to different matter 

contributions for modified f (R,T) gravity 

theory. Among the different classes of 

Harko et al., [1] models, we have 

considered the case f (R, T) = f1(R) + 

f2(T), where f1(R) and f2(T) are the 

arbitrary functions of Ricci scalar R and 

the trace of stress-energy tensor T 

respectively. And if the matter source is 

a WDF then the gravitational field 

equation (8) of f (R, T) gravity reduced to  

    (13) 

where prime denotes differentiation 

respect to argument. Similarly, if we 

assuming f (R, T) = R + 2 f (T) as a first 

choice where f (T) is an arbitrary 

function of the trace of stress-energy 

tensor of matter, we get the 

gravitational field equations of f (R, T) 

gravity from (8) as 

ijijijijijij
gTfTfTTRgR )()()(28

2

1
++−=− 

 (14) 

where the prime denotes differentiation 

respect to argument. Since we consider 

the matter source is a wet dark fluid then 

the field equations (8) of f (R, T) gravity in 

view of (9) reduced to  

  ijWDFijijijij gTfTfpTTfTRgR )()(2)(28
2

1
+++=−   (15) 

 

Metric and the filed equations 

We consider spatially 

homogeneous and anisotropic Bianchi 

type-III metric given by 

 

(16) where A, B and C are only functions 

of cosmic time t. Using co moving 

coordinates, (11) and (12), the f (R, T) 

gravity field equations, with the 

particular choice of the function (Harko 

et al., [1])  

f (T) = λ T, λ = constant (17) 

for the metric (16), take the form  

  (18) 
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H 

(19) 

(20) 

(21) 

=0    (22)     

where an overhead dot denotes 

differentiation with respect to cosmic 

time t. Integrating equation (22),  

we obtain   (23) 

where g1 is an integration constant. 

Without any loss of generality, we take 

, so that we have 

     (24) 

Using equation (24), the field equations 

(18)–(21) will reduce to  

  (25) 

(26) 

(27) 

Subtracting equation (25) from (26) and 

rearranging, we get 

         (28) 

 

Solution of the filed equations 

We observe that the five 

independent differential equitations 

(18)–(22) reduced to the field equations 

(25)–(27) which are a system  of three 

differential equations involving four 

unknown variables, namely A, C,  

and . Thus, a more connecting 

variable is needed solve these 

equations.  In order to obtain explicit 

solutions, we adopt an assumption that 

the shear scalar  proportional to the 

scalar of expansion  which leads to 

(Collins et al., [31]).  

                      (29) 

where  is the positive constant 

parameter and maintains the anisotropic 

character of the space time. The 

expression for the scalar expansion, 

which is kinematical parameter, 

obtained by using equations (24) and 

(29) 

(30) 

An observational quantity which is 

the deceleration parameter  defined 

by , (31) 

where the sign of q indicates whether 

the model inflates or not. For a 

decelerating model we have q > 0, 

whereas for an accelerating model of 

the universe q < 0. The field equations 

(18) - (22) are highly non-linear in 

nature. The other physical or 

mathematical condition to determine 

the solution is assuming the nature of 

deceleration parameter. Some authors 

have proposed the time dependent form 

of deceleration parameter and derive 

the different forms of the average scale 

factor of the model (Verma et al., [32]; 

Akarsu and Dereli [33]; Singh [34]; 

Banerjee and Das [35]; Ellis and Madsen 

[36]; Singha and Debnath [37]; Berman 

[38]). Alternatively, some authors have 

chosen the average scale factor and 

then deduced the time dependent 

deceleration parameter. Equation (31) 

can also be written as  

(32)
1

1 







+−=

Hdt

d
q

 
Abdussattar and Prajapati [39] proposed 

a solution for a time dependent form of 

deceleration parameter (q) as  

      (33) 

where  and > 1 are 

parameters. For , the universe 
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will have an accelerated expansion 

through its revolution. Equation (32) will 

be integrated to give scale factor  

  (34)                

where z1 and z2 are arbitrary constants 

of integrations. Substituting equation 

(33) into equation (34) and putting z2 = 

0, after integration we obtain 

   (35) 

For simplicity, we take z1 = 0 and 

 in equation (35) so that 

     (36) 

The red shift z obtained as 

 (37) 

where a0 is the present scale factor and 

assumed to be 1. The spatial volume (V) 

of the model (16) is given by 

   (38) 

With the help of equation (29), the 

metric potentials A and C become  

    (39) 

    (40) 

With the help of equation (39) and (40), 

the line element (16) reduces to  

   (41) 

 

Some physical and kinematical 

properties of the model 

The metric given by equation (41) 

represents an anisotropic Bianchi type-

III spacetime cosmological model filled 

with wet dark fluid in the f (R, T) gravity 

theory. We now discuss the physical and 

kinamatical behaviors of the Bianchi 

type-III cosmological model with this 

metric. The directional Hubble 

parameters (Hx Hy and Hz) and the 

average Hubble parameter (H) are given 

by  

 and  

              (42) 

  (43) 

The expressions for the scalar expansion 

(θ), the shear scalar  and the 

anisotropy parameter  for the 

metric (41) are respectively as 

follows:       (44)  

 

 

      (46) 

Subtracting equation (27) from (26) and 

using equation (25), the energy density  

(ρW DF) of wet dark fluid is 

 (47) 

In a similar manner, we obtain the 

pressure pW DF of wet dark fluid becomes  

 (48) 
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The metric (41) together with 

equations (39), (40), (47) and (48) 

constitutes anisotropic Bianchi type-III 

cosmological model with wet dark fluid 

in f (R, T) gravity. It may be observed 

that the model (41) is free from initial 

singularity, i.e. at t = 0.  

 

 
Figure 1: Plot of volume expansion (V)      

 

Figure 1 presents the volume 

expansion (V) versus redshift (z) for g2 = 

0.5, 1 and 1.5. It depicts that the volume 

expansion increases for small values of 

the redshift which shows the spatial 

volume in this model increases as 

cosmic time t increases, which indicates 

the accelerated expansion of the 

universe. The Hubble parameter H starts 

with extremely large values and 

continue to decrease with passage of 

time which mimic the present scenario 

of universe (figure 2).  

 

 

Figure 2: Plot Hubble parameter (H) 

versus redshift (z) for g2 = 0.5, 1 and 1.5.          

versus cosmic time t for g2 = 0.5, 1 and 

1.5. 

 
Figure 3: Plot of scale factor (a) versus  

 

Figure 3 depicts the relationship 

between the scale factor (a) versus 

redshift (z). It shows that scale factor 

become increasing in late times. From 

figure 5, it is observed that the energy 

density of wet dark fluid  have 

positive small values in late times for 

chosen parameters g2 = 1, n = 2, and λ = 

−7 and it vanishes for large values of 

cosmic time t.  

 

 
Figure 4: Plot of cosmic jerk parameter 

(j) redshift (z) for g2 = 0.5, 1 and 1.5. 

versus cosmic time t for g2 = 0.5, 1, 1.5 

and 1.5. 
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Figure 5: Plot of energy density of 

 

 
Figure 6: Plot of pressure of wet dark 

wet dark fluid (ρW DF) versus cosmic fluid 

(pW DF) versus cosmic time t for time t for 

g2 = 1, n = 2 and λ = −7. g2 = 1, n = 2 and 

λ= −7. 

 

Figure 6 shows the behavior of 

pressure of wet dark fluid  

versus cosmic time t for g2 = 1, n = 2, 

and λ = −7. The pressure of the wet dark 

fluid has negative values for Bianchi 

type- III space time which shows that 

the universe is accelerated expanding 

for late times with the dominance of 

dark energy. It is also observed that all 

other physical and geometrical 

quantities are functions of cosmic time t 

and vanish as cosmic time t becomes 

infinitely large. We see that  and 

hence the model does not approach 

isotropy for large values of cosmic time 

t. However, the model becomes 

isotropic for n = 1 and the universe will 

be in a state of accelerated expansion.  

 

Cosmic jerk parameter 

It is believed that the transition 

from the decelerating to the 

accelerating phase of the universe is 

due to a cosmic jerk. This transition of 

the universe occurs for different models 

with a positive value of the jerk 

parameter and the negative value of the 

deceleration parameter (Visser [40]). 

Rapetti et al., [41] showed that for flat 

ΛCDM model the value of jerk becomes r 

= 1. The cosmic jerk parameter is a 

dimensionless quantity containing the 

third order derivative of the average 

scale factor with respect to the cosmic 

time and it is given by 

       (49) 

Using equations (33) and (43) in (49), we 

get expression for the jerk parameter as 

    (50)  

where  . The jerk parameter for 

the model (50) has value r = 1 for large 

value of cosmic time t. Figure 4 shows 

that the cosmic jerk parameter is non-

negative throughout the entire life of 

the universe and tends to 1 at late times 

for the chosen parameters. We 

emphasize here that the behavior of jerk 

parameter in the model indicates the 

ΛCDM limit which consistent with recent 

observational data of cosmology.  

 

Conclusions 

We have investigated anisotropic 

Bianch type-III cosmological model with 

wet dark fluid which is a candidate for 

dark energy model in the framework of f 
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(R, T) theory of gravity proposed by 

Harko et al., [1] for an appropriate 

choice of the function f (R, T) = f1(R) + 

f2(T), where f1(R) = R and f2(T) = 2λ T 

with constant parameter λ. We 

presented exact solutions of the fields 

equations by using a special form of the 

average scale factor derived from the 

time varying deceleration parameter 

proposed by Abdussattar and Prajapati 

[39] and assuming that the shear scalar 

(σ) in the model is proportional to 

expansion scalar (θ). 

It is concluded that the model has 

no initial singularity. The spatial volume 

will be constant for cosmic time t = 0 

which implies that the universe is 

expanding constantly and expands 

continuously approaching to infinite 

volume at late times. The relationship 

between volume of expansion versus 

redshift shown in figure 1 for certain 

parameters supports the expanding of 

the universe in late times. The scale 

factor versus redshift (figure 3) similarly 

supports the expansion of the universe 

which is consistency with recent 

observations of cosmological data. The 

behavior of the Hubble’s parameter (H) 

versus cosmic time t has been graphed 

in figure 2. The parameters H, θ and σ 2 

start with constant at initial epoch and 

continue to decrease with passage of 

time which mimic the present scenario 

of universe. Since constant, the 

anisotropy in the universe is maintained 

throughout the passage of time. The 

energy density of wet dark fluid (ρWDF) is 

decreasing with increasing of cosmic 

time t and the pressure of the wet dark 

fluid (pWDF) increasing negatively with 

cosmic time which indicates the 

accelerated expansion of the universe 

(figures 5 and 6). The pressure has 

negative values for Bianchi type- III 

which shows that the universe is 

accelerated expanding for late times. 

We observe that the behavior of jerk 

parameter in the model shows flatness 

of the universe as r c 1 (figure 4) for 

certain chosen parameters. It was 

proved that the modified theory of f (R, 

T) gravity allowed transition of matter 

from dominated phase to an 

acceleration phase. Thus, it is verified 

that f (R, T) gravity may explain the 

present phase of cosmic acceleration of 

our universe in the presence of wet dark 

fluid. 
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